

Embankment on Ringtrac[®]-Encased Columns

1. General

In addition to this questionnaire a representative cross section drawing illustrating soil stratification, geometry, loads and water levels as well as a location plan showing an overview of the entire structure are required.

HUESKER Synthetic GmbH

Fabrikstraße 13-15, D-48712 Gescher Tel.: + 49 (0) 25 42 / 701 - 0 Fax: + 49 (0) 25 42 / 701 - 499 E-Mait: info@HUESKER.de Internet: www.HUESKER.com

Embankment on Ringtrac[®]-Encased Columns

2. Geometry, loads and soil parameters

Geometry			
embankment height	h	=	[m]
crest width	b _c	=	[m]
base width	b _b	=	[m]
Length of the embankment	1	=	[m]
slope inclination (left)	1 : x ₁	=	[-]
slope inclination (right)	1 : x ₂	=	[-]
angle of the terrain (left)	α ₁	=	[°] (respectively 1:n)
angle of the terrain (right)	α ₂	=	[°] (respectively 1:n)
total thickness of all soft soil layers	t	=	[m]
thickness of soft soil layer 1	t ₁	=	[m]
thickness of soft soil layer 2	t ₂	=	[m]
thickness of soft soil layer 3	t ₃	=	[m]

Loads			
dead load	p =		[kN/m²]
live load	q =		[kN/m²]
Soil parameters of the embankment fill			
soil designation			[e.g. sandy gravel]
effective angle of	φ' =		[°]
internal friction			
effective cohesion	C' =		[kN/m²]
soil unit weight	γ =		[kN/m³]

Soil parameters of the columns filling material			
soil designation*			[e.g. sand]
effective angle of internal friction	φ' =		kN/m²
effective cohesion	C' =		kN/m ³
oedometric (constrained) moduls	E _s =		m
soil unit weight	γ =		kN/m ²

* additionally a gradation curve should be provided

HUESKER

Ideen. Ingenieure. Innovationen.

Embankment on Ringtrac[®]-Encased Columns

Soil parameters of the soft soil layers		
Soft soil layer 1		
soil designation		[e.g. soft clay]
effective angle of internal friction	φ'	[°]
effective cohesion	C' =	[kN/m²]
unconsolidated shear strength	S _u =	[kN/m²]
soil unit weight	γ =	[kN/m³]
poisson's ratio	v =	[-]
oedometric (constrained) modulus E _{s,ref}	E _{s,ref} =	[kN/m²]
at a reference normal stress p _{ref}	p _{ref} =	[kN/m²]
Soft soil layer 2		
soil designation		[e.g. soft clay]
effective angle of internal friction	φ' =	[°]
effective cohesion	C' =	[kN/m²]
unconsolidated shear strength	S _u =	[kN/m²]
soil unit weight	γ =	[kN/m³]
poisson's ratio	V =	[-]
oedometric (constrained) modulus $E_{s,ref}$	E _{s,ref} =	[kN/m²]
at a reference normal stress p _{ref}	p _{ref} =	[kN/m²]
Soft soil layer 3		
soil designation		[e.g. soft clay]
effective angle of internal friction	φ' =	[°]
effective cohesion	C' =	[kN/m²]
unconsolidated shear strength	S _u =	[kN/m²]
soil unit weight	γ =	[kN/m ³]
poisson's ratio	V =	[-]
oedometric (constrained) modulus E _{s,ref}	E _{s,ref} =	[kN/m²]
at a reference normal stress p _{ref}	p _{ref} =	[kN/m²]

Soil parameters of the firm subsoil			
soil designation		[e.g. soft clay]	
effective angle of internal friction	φ' =	[°]	
effective cohesion	C' =	[kN/m ²]	
oedometric (constrained) modulus	E _s =	[kN/m ²]	
soil unit weight	γ =	[kN/m ³]	

Water levels		
Ground water level (below the base of the embankment)	GWL =	[m]
Water lebel (above the base	max WL =	[m]
of the embankment)	min WL =	[m]

HUESKER Synthetic GmbH

HUESKER

Ideen. Ingenieure. Innovationen.

Ideen. Ingenieure. Innovationen.

Embankment on Ringtrac[®]-Encased Columns

Method of installation and installation equipment (if known or preferred) 3.

Replacement method of installation		
drilling rig (producer and type)		
operating weight	[kN]	
crowd pull force	[kN]	
crowd push force	[kN]	
vibrator (producer and type)		
inner diameter of the steel casing (tube)	[mm]	
Outer diameter of the steel casing (tube)	[mm]	
Displacement method of installation		
drilling rig (producer and type)		
operating weight	[kN]	
crowd pull force	[kN]	
crowd push force	[kN]	
vibrator (producer and type)		
inner diameter of the steel casing (tube)	[mm]	
outer diameter of the steel casing (tube)	[mm]	

4. Additional information (Construction time? Allowable total and post-construction settlements? Preferred column grid (triangular or rectangular) and spacing? Et cetera)

5. Target date of project completion

Date:

Signature: